skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wong, Cindy Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Solution-processable semiconductors hold promise in enabling applications requiring cost-effective electronics at scale but suffer from low performance limited by defects. We show that ordered defect compound semiconductor CuIn5Se8, which forms regular defect complexes with defect-pair compensation, can simultaneously achieve high performance and solution processability. CuIn5Se8transistors exhibit defect-tolerant, band-like transport supplying an output current above 35 microamperes per micrometer, with a large on/off ratio greater than 106, a small subthreshold swing of 189 ± 21 millivolts per decade, and a high field-effect mobility of 58 ± 10 square centimeters per volt per second, with excellent uniformity and stability, superior to devices built on its less defective parent compound CuInSe2, analogous binary compound In2Se3, and other solution-deposited semiconductors. They can be monolithically integrated with carbon nanotube transistors to form high-speed and low-voltage three-dimensional complementary logic circuits and with micro-light-emitting diodes to realize high-resolution displays. 
    more » « less